Keep/keep-notes/tests/unit/rrf.test.ts
sepehr 640fcb26f7 fix: improve note interactions and markdown LaTeX support
## Bug Fixes

### Note Card Actions
- Fix broken size change functionality (missing state declaration)
- Implement React 19 useOptimistic for instant UI feedback
- Add startTransition for non-blocking updates
- Ensure smooth animations without page refresh
- All note actions now work: pin, archive, color, size, checklist

### Markdown LaTeX Rendering
- Add remark-math and rehype-katex plugins
- Support inline equations with dollar sign syntax
- Support block equations with double dollar sign syntax
- Import KaTeX CSS for proper styling
- Equations now render correctly instead of showing raw LaTeX

## Technical Details

- Replace undefined currentNote references with optimistic state
- Add optimistic updates before server actions for instant feedback
- Use router.refresh() in transitions for smart cache invalidation
- Install remark-math, rehype-katex, and katex packages

## Testing

- Build passes successfully with no TypeScript errors
- Dev server hot-reloads changes correctly
2026-01-09 22:13:49 +01:00

153 lines
5.1 KiB
TypeScript

import { test, expect } from '@playwright/test';
import { calculateRRFK } from '../../lib/utils';
test.describe('RRF K Calculation Tests', () => {
test('should return minimum k=20 for small datasets', () => {
// For small datasets (< 200 notes), k should be 20
expect(calculateRRFK(0)).toBe(20);
expect(calculateRRFK(10)).toBe(20);
expect(calculateRRFK(50)).toBe(20);
expect(calculateRRFK(100)).toBe(20);
expect(calculateRRFK(199)).toBe(20);
});
test('should return k=20 for exactly 200 notes', () => {
expect(calculateRRFK(200)).toBe(20);
});
test('should scale k for larger datasets', () => {
// k = max(20, totalNotes / 10)
expect(calculateRRFK(500)).toBe(50); // 500/10 = 50
expect(calculateRRFK(1000)).toBe(100); // 1000/10 = 100
expect(calculateRRFK(250)).toBe(25); // 250/10 = 25
});
test('should handle edge cases', () => {
expect(calculateRRFK(201)).toBe(20); // 201/10 = 20.1 → floor → 20, max(20,20) = 20
expect(calculateRRFK(210)).toBe(21); // 210/10 = 21
expect(calculateRRFK(10000)).toBe(1000); // 10000/10 = 1000
});
test('k should always be at least 20', () => {
// Even for very small datasets, k should not be below 20
for (let i = 0; i <= 200; i++) {
expect(calculateRRFK(i)).toBeGreaterThanOrEqual(20);
}
});
test('should be lower than old value for typical datasets', () => {
// For typical user datasets (< 500 notes), new k should be lower than old k=60
expect(calculateRRFK(100)).toBeLessThan(60);
expect(calculateRRFK(200)).toBeLessThan(60);
expect(calculateRRFK(300)).toBe(30); // 300/10 = 30
expect(calculateRRFK(500)).toBe(50); // 500/10 = 50
});
test('should surpass old value for very large datasets', () => {
// For very large datasets (> 600 notes), k should be higher than 60
expect(calculateRRFK(700)).toBe(70); // 700/10 = 70
expect(calculateRRFK(1000)).toBe(100);
});
});
test.describe('RRF Ranking Behavior Tests', () => {
test('RRF with lower k penalizes low ranks more', () => {
// Simulate RRF scores for a note at rank 5
// Formula: score = 1 / (k + rank)
const rank = 5;
const scoreWithK20 = 1 / (20 + rank); // 1/25 = 0.04
const scoreWithK60 = 1 / (60 + rank); // 1/65 = 0.015
// Lower k gives higher score to low ranks
expect(scoreWithK20).toBeGreaterThan(scoreWithK60);
});
test('RRF favors items ranked high in both lists', () => {
// Note A: rank 1 in both lists
const scoreA_K20 = 1 / (20 + 1) + 1 / (20 + 1); // 2/21 ≈ 0.095
// Note B: rank 1 in one list, rank 10 in other
const scoreB_K20 = 1 / (20 + 1) + 1 / (20 + 10); // 1/21 + 1/30 ≈ 0.081
// Note C: rank 5 in both lists
const scoreC_K20 = 1 / (20 + 5) + 1 / (20 + 5); // 2/25 = 0.08
// Note A should have highest score (consistently high)
expect(scoreA_K20).toBeGreaterThan(scoreB_K20);
expect(scoreA_K20).toBeGreaterThan(scoreC_K20);
});
test('k=20 vs k=60 ranking difference', () => {
// Note at rank 20
const rank = 20;
const scoreWithK20 = 1 / (20 + rank); // 1/40 = 0.025
const scoreWithK60 = 1 / (60 + rank); // 1/80 = 0.0125
// With k=20, rank 20 is scored 2x higher than with k=60
expect(scoreWithK20 / scoreWithK60).toBeCloseTo(2.0, 1);
});
test('RRF score should decrease as rank increases', () => {
const k = 20;
const scoreRank1 = 1 / (k + 1);
const scoreRank5 = 1 / (k + 5);
const scoreRank10 = 1 / (k + 10);
const scoreRank50 = 1 / (k + 50);
expect(scoreRank1).toBeGreaterThan(scoreRank5);
expect(scoreRank5).toBeGreaterThan(scoreRank10);
expect(scoreRank10).toBeGreaterThan(scoreRank50);
});
test('RRF handles missing ranks gracefully', () => {
// If a note is not in a list, it gets the max rank
const k = 20;
const totalNotes = 100;
const missingRank = totalNotes; // Treated as worst rank
const scoreWithMissing = 1 / (k + missingRank);
const scoreWithRank50 = 1 / (k + 50);
// Missing rank should give much lower score
expect(scoreWithMissing).toBeLessThan(scoreWithRank50);
});
});
test.describe('RRF Adaptive Behavior Tests', () => {
test('adaptive k provides better rankings for small datasets', () => {
// For 50 notes: k=20 (adaptive) vs k=60 (old)
const totalNotes = 50;
const kAdaptive = calculateRRFK(totalNotes); // 20
const kOld = 60;
// Compare scores for rank 10 (20% of dataset)
const rank = 10;
const scoreAdaptive = 1 / (kAdaptive + rank);
const scoreOld = 1 / (kOld + rank);
// Adaptive k gives higher score to mid-rank items in small datasets
expect(scoreAdaptive).toBeGreaterThan(scoreOld);
});
test('adaptive k scales appropriately', () => {
const datasets = [10, 50, 100, 200, 500, 1000];
datasets.forEach(notes => {
const k = calculateRRFK(notes);
// k should always be at least 20
expect(k).toBeGreaterThanOrEqual(20);
// k should scale with dataset size
if (notes < 200) {
expect(k).toBe(20);
} else {
expect(k).toBe(Math.floor(notes / 10));
}
});
});
});