CRITICAL FIX: Auto-labels, notebook summaries, and other AI features were not working because 8 services were calling getAIProvider() WITHOUT passing the config parameter. This caused them to use the default 'ollama' provider instead of the configured OpenAI provider from the database. ROOT CAUSE ANALYSIS: Working features (titles): - title-suggestions/route.ts: getAIProvider(config) ✓ Broken features (auto-labels, summaries): - contextual-auto-tag.service.ts: getAIProvider() ✗ (2x) - notebook-summary.service.ts: getAIProvider() ✗ - auto-label-creation.service.ts: getAIProvider() ✗ - notebook-suggestion.service.ts: getAIProvider() ✗ - batch-organization.service.ts: getAIProvider() ✗ - embedding.service.ts: getAIProvider() ✗ (2x) FIXED: All 8 services now properly call: const config = await getSystemConfig() const provider = getAIProvider(config) This ensures ALL AI features use the provider configured in the admin interface (OpenAI) instead of defaulting to Ollama. Co-Authored-By: Claude Sonnet 4.5 <noreply@anthropic.com>
228 lines
6.2 KiB
TypeScript
228 lines
6.2 KiB
TypeScript
/**
|
|
* Embedding Service
|
|
* Generates vector embeddings for semantic search and similarity analysis
|
|
* Uses text-embedding-3-small model via OpenAI (or Ollama alternatives)
|
|
*/
|
|
|
|
import { getAIProvider } from '../factory'
|
|
import { getSystemConfig } from '@/lib/config'
|
|
|
|
export interface EmbeddingResult {
|
|
embedding: number[]
|
|
model: string
|
|
dimension: number
|
|
}
|
|
|
|
/**
|
|
* Service for generating and managing text embeddings
|
|
*/
|
|
export class EmbeddingService {
|
|
private readonly EMBEDDING_MODEL = 'text-embedding-3-small'
|
|
private readonly EMBEDDING_DIMENSION = 1536 // OpenAI's embedding dimension
|
|
|
|
/**
|
|
* Generate embedding for a single text
|
|
*/
|
|
async generateEmbedding(text: string): Promise<EmbeddingResult> {
|
|
if (!text || text.trim().length === 0) {
|
|
throw new Error('Cannot generate embedding for empty text')
|
|
}
|
|
|
|
try {
|
|
const config = await getSystemConfig()
|
|
const provider = getAIProvider(config)
|
|
|
|
// Use the existing getEmbeddings method from AIProvider
|
|
const embedding = await provider.getEmbeddings(text)
|
|
|
|
// Validate embedding dimension
|
|
if (embedding.length !== this.EMBEDDING_DIMENSION) {
|
|
}
|
|
|
|
return {
|
|
embedding,
|
|
model: this.EMBEDDING_MODEL,
|
|
dimension: embedding.length
|
|
}
|
|
} catch (error) {
|
|
console.error('Error generating embedding:', error)
|
|
throw new Error(`Failed to generate embedding: ${error}`)
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Generate embeddings for multiple texts in batch
|
|
* More efficient than calling generateEmbedding multiple times
|
|
*/
|
|
async generateBatchEmbeddings(texts: string[]): Promise<EmbeddingResult[]> {
|
|
if (!texts || texts.length === 0) {
|
|
return []
|
|
}
|
|
|
|
// Filter out empty texts
|
|
const validTexts = texts.filter(t => t && t.trim().length > 0)
|
|
|
|
if (validTexts.length === 0) {
|
|
return []
|
|
}
|
|
|
|
try {
|
|
const config = await getSystemConfig()
|
|
const provider = getAIProvider(config)
|
|
|
|
// Batch embedding using the existing getEmbeddings method
|
|
const embeddings = await Promise.all(
|
|
validTexts.map(text => provider.getEmbeddings(text))
|
|
)
|
|
|
|
return embeddings.map(embedding => ({
|
|
embedding,
|
|
model: this.EMBEDDING_MODEL,
|
|
dimension: embedding.length
|
|
}))
|
|
} catch (error) {
|
|
console.error('Error generating batch embeddings:', error)
|
|
throw error
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Calculate cosine similarity between two embeddings
|
|
* Returns value between -1 and 1, where 1 is identical
|
|
*/
|
|
calculateCosineSimilarity(embedding1: number[], embedding2: number[]): number {
|
|
if (embedding1.length !== embedding2.length) {
|
|
throw new Error('Embeddings must have the same dimension')
|
|
}
|
|
|
|
let dotProduct = 0
|
|
let magnitude1 = 0
|
|
let magnitude2 = 0
|
|
|
|
for (let i = 0; i < embedding1.length; i++) {
|
|
dotProduct += embedding1[i] * embedding2[i]
|
|
magnitude1 += embedding1[i] * embedding1[i]
|
|
magnitude2 += embedding2[i] * embedding2[i]
|
|
}
|
|
|
|
magnitude1 = Math.sqrt(magnitude1)
|
|
magnitude2 = Math.sqrt(magnitude2)
|
|
|
|
if (magnitude1 === 0 || magnitude2 === 0) {
|
|
return 0
|
|
}
|
|
|
|
return dotProduct / (magnitude1 * magnitude2)
|
|
}
|
|
|
|
/**
|
|
* Calculate similarity between an embedding and multiple other embeddings
|
|
* Returns array of similarities
|
|
*/
|
|
calculateSimilarities(
|
|
queryEmbedding: number[],
|
|
targetEmbeddings: number[][]
|
|
): number[] {
|
|
return targetEmbeddings.map(embedding =>
|
|
this.calculateCosineSimilarity(queryEmbedding, embedding)
|
|
)
|
|
}
|
|
|
|
/**
|
|
* Find most similar embeddings to a query
|
|
* Returns top-k results with their similarities
|
|
*/
|
|
findMostSimilar(
|
|
queryEmbedding: number[],
|
|
targetEmbeddings: Array<{ id: string; embedding: number[] }>,
|
|
topK: number = 10
|
|
): Array<{ id: string; similarity: number }> {
|
|
const similarities = targetEmbeddings.map(({ id, embedding }) => ({
|
|
id,
|
|
similarity: this.calculateCosineSimilarity(queryEmbedding, embedding)
|
|
}))
|
|
|
|
// Sort by similarity descending and return top-k
|
|
return similarities
|
|
.sort((a, b) => b.similarity - a.similarity)
|
|
.slice(0, topK)
|
|
}
|
|
|
|
/**
|
|
* Get average embedding from multiple embeddings
|
|
* Useful for clustering or centroid calculation
|
|
*/
|
|
averageEmbeddings(embeddings: number[][]): number[] {
|
|
if (embeddings.length === 0) {
|
|
throw new Error('Cannot average empty embeddings array')
|
|
}
|
|
|
|
const dimension = embeddings[0].length
|
|
const average = new Array(dimension).fill(0)
|
|
|
|
for (const embedding of embeddings) {
|
|
if (embedding.length !== dimension) {
|
|
throw new Error('All embeddings must have the same dimension')
|
|
}
|
|
|
|
for (let i = 0; i < dimension; i++) {
|
|
average[i] += embedding[i]
|
|
}
|
|
}
|
|
|
|
// Divide by number of embeddings
|
|
return average.map(val => val / embeddings.length)
|
|
}
|
|
|
|
/**
|
|
* Serialize embedding to JSON-safe format (for storage)
|
|
*/
|
|
serialize(embedding: number[]): string {
|
|
return JSON.stringify(embedding)
|
|
}
|
|
|
|
/**
|
|
* Deserialize embedding from JSON string
|
|
*/
|
|
deserialize(jsonString: string): number[] {
|
|
try {
|
|
const parsed = JSON.parse(jsonString)
|
|
if (!Array.isArray(parsed)) {
|
|
throw new Error('Invalid embedding format')
|
|
}
|
|
return parsed
|
|
} catch (error) {
|
|
console.error('Error deserializing embedding:', error)
|
|
throw new Error('Failed to deserialize embedding')
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Check if a note needs embedding regeneration
|
|
* (e.g., if content has changed significantly)
|
|
*/
|
|
shouldRegenerateEmbedding(
|
|
noteContent: string,
|
|
lastEmbeddingContent: string | null,
|
|
lastAnalysis: Date | null
|
|
): boolean {
|
|
// If no previous embedding, generate one
|
|
if (!lastEmbeddingContent || !lastAnalysis) {
|
|
return true
|
|
}
|
|
|
|
// If content has changed more than 20% (simple heuristic)
|
|
const contentChanged =
|
|
Math.abs(noteContent.length - lastEmbeddingContent.length) / lastEmbeddingContent.length > 0.2
|
|
|
|
// If last analysis is more than 7 days old
|
|
const daysSinceAnalysis = (Date.now() - lastAnalysis.getTime()) / (1000 * 60 * 60 * 24)
|
|
const isStale = daysSinceAnalysis > 7
|
|
|
|
return contentChanged || isStale
|
|
}
|
|
}
|
|
|
|
// Singleton instance
|
|
export const embeddingService = new EmbeddingService()
|