- Add AI Provider Testing page (/admin/ai-test) with Tags and Embeddings tests - Add new AI providers: CustomOpenAI, DeepSeek, OpenRouter - Add API routes for AI config, models listing, and testing endpoints - Add UX Design Specification document for Phase 1 MVP AI - Add PRD Phase 1 MVP AI planning document - Update admin settings and sidebar navigation - Fix AI factory for multi-provider support
99 lines
2.8 KiB
TypeScript
99 lines
2.8 KiB
TypeScript
import { NextRequest, NextResponse } from 'next/server'
|
|
import { getSystemConfig } from '@/lib/config'
|
|
|
|
// Modèles populaires pour chaque provider (2025)
|
|
const PROVIDER_MODELS = {
|
|
ollama: {
|
|
tags: [
|
|
'llama3:latest',
|
|
'llama3.2:latest',
|
|
'granite4:latest',
|
|
'mistral:latest',
|
|
'mixtral:latest',
|
|
'phi3:latest',
|
|
'gemma2:latest',
|
|
'qwen2:latest'
|
|
],
|
|
embeddings: [
|
|
'embeddinggemma:latest',
|
|
'mxbai-embed-large:latest',
|
|
'nomic-embed-text:latest'
|
|
]
|
|
},
|
|
openai: {
|
|
tags: [
|
|
'gpt-4o',
|
|
'gpt-4o-mini',
|
|
'gpt-4-turbo',
|
|
'gpt-4',
|
|
'gpt-3.5-turbo'
|
|
],
|
|
embeddings: [
|
|
'text-embedding-3-small',
|
|
'text-embedding-3-large',
|
|
'text-embedding-ada-002'
|
|
]
|
|
},
|
|
custom: {
|
|
tags: [], // Will be loaded dynamically
|
|
embeddings: [] // Will be loaded dynamically
|
|
}
|
|
}
|
|
|
|
export async function GET(request: NextRequest) {
|
|
try {
|
|
const config = await getSystemConfig()
|
|
const provider = (config.AI_PROVIDER || 'ollama').toLowerCase()
|
|
|
|
let models = PROVIDER_MODELS[provider as keyof typeof PROVIDER_MODELS] || { tags: [], embeddings: [] }
|
|
|
|
// Pour Ollama, essayer de récupérer la liste réelle depuis l'API locale
|
|
if (provider === 'ollama') {
|
|
try {
|
|
const ollamaBaseUrl = config.OLLAMA_BASE_URL || process.env.OLLAMA_BASE_URL || 'http://localhost:11434'
|
|
const response = await fetch(`${ollamaBaseUrl}/api/tags`, {
|
|
method: 'GET',
|
|
headers: { 'Content-Type': 'application/json' }
|
|
})
|
|
|
|
if (response.ok) {
|
|
const data = await response.json()
|
|
const allModels = data.models || []
|
|
|
|
// Séparer les modèles de tags et d'embeddings
|
|
const tagModels = allModels
|
|
.filter((m: any) => !m.name.includes('embed') && !m.name.includes('Embedding'))
|
|
.map((m: any) => m.name)
|
|
.slice(0, 20) // Limiter à 20 modèles
|
|
|
|
const embeddingModels = allModels
|
|
.filter((m: any) => m.name.includes('embed') || m.name.includes('Embedding'))
|
|
.map((m: any) => m.name)
|
|
|
|
models = {
|
|
tags: tagModels.length > 0 ? tagModels : models.tags,
|
|
embeddings: embeddingModels.length > 0 ? embeddingModels : models.embeddings
|
|
}
|
|
}
|
|
} catch (error) {
|
|
console.warn('Could not fetch Ollama models, using defaults:', error)
|
|
// Garder les modèles par défaut
|
|
}
|
|
}
|
|
|
|
return NextResponse.json({
|
|
provider,
|
|
models: models || { tags: [], embeddings: [] }
|
|
})
|
|
} catch (error: any) {
|
|
console.error('Error fetching models:', error)
|
|
return NextResponse.json(
|
|
{
|
|
error: error.message || 'Failed to fetch models',
|
|
models: { tags: [], embeddings: [] }
|
|
},
|
|
{ status: 500 }
|
|
)
|
|
}
|
|
}
|