Keep/keep-notes/lib/utils.ts
sepehr 640fcb26f7 fix: improve note interactions and markdown LaTeX support
## Bug Fixes

### Note Card Actions
- Fix broken size change functionality (missing state declaration)
- Implement React 19 useOptimistic for instant UI feedback
- Add startTransition for non-blocking updates
- Ensure smooth animations without page refresh
- All note actions now work: pin, archive, color, size, checklist

### Markdown LaTeX Rendering
- Add remark-math and rehype-katex plugins
- Support inline equations with dollar sign syntax
- Support block equations with double dollar sign syntax
- Import KaTeX CSS for proper styling
- Equations now render correctly instead of showing raw LaTeX

## Technical Details

- Replace undefined currentNote references with optimistic state
- Add optimistic updates before server actions for instant feedback
- Use router.refresh() in transitions for smart cache invalidation
- Install remark-math, rehype-katex, and katex packages

## Testing

- Build passes successfully with no TypeScript errors
- Dev server hot-reloads changes correctly
2026-01-09 22:13:49 +01:00

208 lines
5.4 KiB
TypeScript

import { clsx, type ClassValue } from "clsx"
import { twMerge } from "tailwind-merge"
import { LABEL_COLORS, LabelColorName, QueryType } from "./types"
export function cn(...inputs: ClassValue[]) {
return twMerge(clsx(inputs))
}
export function getHashColor(name: string): LabelColorName {
let hash = 0;
for (let i = 0; i < name.length; i++) {
hash = name.charCodeAt(i) + ((hash << 5) - hash);
}
const colors = Object.keys(LABEL_COLORS) as LabelColorName[];
// Skip 'gray' for colorful tags
const colorfulColors = colors.filter(c => c !== 'gray');
const colorIndex = Math.abs(hash) % colorfulColors.length;
return colorfulColors[colorIndex];
}
export function cosineSimilarity(vecA: number[], vecB: number[]): number {
if (vecA.length !== vecB.length) return 0;
let dotProduct = 0;
let mA = 0;
let mB = 0;
for (let i = 0; i < vecA.length; i++) {
dotProduct += vecA[i] * vecB[i];
mA += vecA[i] * vecA[i];
mB += vecB[i] * vecB[i];
}
mA = Math.sqrt(mA);
mB = Math.sqrt(mB);
if (mA === 0 || mB === 0) return 0;
return dotProduct / (mA * mB);
}
/**
* Validate an embedding vector for quality issues
*/
export function validateEmbedding(embedding: number[]): { valid: boolean; issues: string[] } {
const issues: string[] = [];
// Check 1: Dimensionality > 0
if (!embedding || embedding.length === 0) {
issues.push('Embedding is empty or has zero dimensionality');
return { valid: false, issues };
}
// Check 2: Valid numbers (no NaN or Infinity)
let hasNaN = false;
let hasInfinity = false;
let hasZeroVector = true;
for (let i = 0; i < embedding.length; i++) {
const val = embedding[i];
if (isNaN(val)) hasNaN = true;
if (!isFinite(val)) hasInfinity = true;
if (val !== 0) hasZeroVector = false;
}
if (hasNaN) {
issues.push('Embedding contains NaN values');
}
if (hasInfinity) {
issues.push('Embedding contains Infinity values');
}
if (hasZeroVector) {
issues.push('Embedding is a zero vector (all values are 0)');
}
// Check 3: L2 norm is in reasonable range (0.7 to 1.2)
const l2Norm = calculateL2Norm(embedding);
if (l2Norm < 0.7 || l2Norm > 1.2) {
issues.push(`L2 norm is ${l2Norm.toFixed(3)} (expected range: 0.7-1.2)`);
}
return {
valid: issues.length === 0,
issues
};
}
/**
* Calculate L2 norm of a vector
*/
export function calculateL2Norm(vector: number[]): number {
let sum = 0;
for (let i = 0; i < vector.length; i++) {
sum += vector[i] * vector[i];
}
return Math.sqrt(sum);
}
/**
* Normalize an embedding to unit L2 norm
*/
export function normalizeEmbedding(embedding: number[]): number[] {
const norm = calculateL2Norm(embedding);
if (norm === 0) return embedding; // Can't normalize zero vector
return embedding.map(val => val / norm);
}
/**
* Calculate the RRF (Reciprocal Rank Fusion) constant k
*
* RRF Formula: score = Σ 1 / (k + rank)
*
* The k constant controls how much we penalize lower rankings:
* - Lower k (e.g., 20) penalizes low ranks more heavily
* - Higher k (e.g., 60) is more lenient with low ranks
*
* Adaptive formula: k = max(20, totalNotes / 10)
* - For small datasets (< 200 notes): k = 20 (strict)
* - For larger datasets: k scales linearly
*
* Examples:
* - 50 notes → k = 20
* - 200 notes → k = 20
* - 500 notes → k = 50
* - 1000 notes → k = 100
*/
export function calculateRRFK(totalNotes: number): number {
const BASE_K = 20;
const adaptiveK = Math.floor(totalNotes / 10);
return Math.max(BASE_K, adaptiveK);
}
/**
* Detect the type of search query to adapt search weights
*
* Detection rules:
* 1. EXACT: Query contains quotes (e.g., "Error 404")
* 2. CONCEPTUAL: Query starts with question words or is a phrase like "how to X"
* 3. MIXED: No specific pattern detected
*
* Examples:
* - "exact phrase" → 'exact'
* - "how to cook pasta" → 'conceptual'
* - "what is python" → 'conceptual'
* - "javascript tutorial" → 'mixed'
*/
export function detectQueryType(query: string): QueryType {
const trimmed = query.trim().toLowerCase();
// Rule 1: Check for quotes (exact match)
if ((query.startsWith('"') && query.endsWith('"')) ||
(query.startsWith("'") && query.endsWith("'"))) {
return 'exact';
}
// Rule 2: Check for conceptual patterns
const conceptualPatterns = [
/^(how|what|when|where|why|who|which|whose|can|could|would|should|is|are|do|does|did)\b/,
/^(how to|ways to|best way to|guide for|tips for|learn about|understand)/,
/^(tutorial|guide|introduction|overview|explanation|examples)/,
];
for (const pattern of conceptualPatterns) {
if (pattern.test(trimmed)) {
return 'conceptual';
}
}
// Default: mixed search
return 'mixed';
}
/**
* Get search weight multipliers based on query type
*
* Returns keyword and semantic weight multipliers:
* - EXACT: Boost keyword matches (2.0x), reduce semantic (0.7x)
* - CONCEPTUAL: Reduce keyword (0.7x), boost semantic (1.5x)
* - MIXED: Default weights (1.0x, 1.0x)
*/
export function getSearchWeights(queryType: QueryType): {
keywordWeight: number;
semanticWeight: number;
} {
switch (queryType) {
case 'exact':
return {
keywordWeight: 2.0,
semanticWeight: 0.7
};
case 'conceptual':
return {
keywordWeight: 0.7,
semanticWeight: 1.5
};
case 'mixed':
default:
return {
keywordWeight: 1.0,
semanticWeight: 1.0
};
}
}