## Bug Fixes ### Note Card Actions - Fix broken size change functionality (missing state declaration) - Implement React 19 useOptimistic for instant UI feedback - Add startTransition for non-blocking updates - Ensure smooth animations without page refresh - All note actions now work: pin, archive, color, size, checklist ### Markdown LaTeX Rendering - Add remark-math and rehype-katex plugins - Support inline equations with dollar sign syntax - Support block equations with double dollar sign syntax - Import KaTeX CSS for proper styling - Equations now render correctly instead of showing raw LaTeX ## Technical Details - Replace undefined currentNote references with optimistic state - Add optimistic updates before server actions for instant feedback - Use router.refresh() in transitions for smart cache invalidation - Install remark-math, rehype-katex, and katex packages ## Testing - Build passes successfully with no TypeScript errors - Dev server hot-reloads changes correctly
48 lines
1.7 KiB
Markdown
48 lines
1.7 KiB
Markdown
# Story 3.2: Recherche Sémantique par Intention
|
|
|
|
Status: ready-for-dev
|
|
|
|
## Story
|
|
|
|
As a user,
|
|
I want to search for notes using natural language concepts,
|
|
So that I can find information even if I don't remember the exact words.
|
|
|
|
## Acceptance Criteria
|
|
|
|
1. **Given** a search query in the search bar.
|
|
2. **When** the search is executed.
|
|
3. **Then** the system generates an embedding for the query via the AI Provider.
|
|
4. **And** the system calculates the cosine similarity between the query embedding and all note embeddings in memory.
|
|
5. **And** notes with high similarity (e.g., > 0.7) are returned even without keyword matches.
|
|
|
|
## Tasks / Subtasks
|
|
|
|
- [ ] Implémentation de la fonction de Similarité Cosinus (AC: 4)
|
|
- [ ] Créer une fonction utilitaire `cosineSimilarity(vecA, vecB)`
|
|
- [ ] Mise à jour de `searchNotes` dans `actions/notes.ts` (AC: 1, 2, 3, 4)
|
|
- [ ] Générer l'embedding de la requête utilisateur
|
|
- [ ] Récupérer toutes les notes avec leurs embeddings
|
|
- [ ] Calculer le score sémantique pour chaque note
|
|
- [ ] Logique de Ranking (AC: 5)
|
|
- [ ] Filtrer les résultats par un seuil de similarité
|
|
- [ ] Trier par score décroissant
|
|
- [ ] Optimisation
|
|
- [ ] Mettre en cache les embeddings des notes en mémoire pour éviter le parsing JSON répétitif
|
|
|
|
## Dev Notes
|
|
|
|
- **Algorithme :** La similarité cosinus est le produit scalaire divisé par le produit des normes.
|
|
- **Hybridité :** Cette story se concentre sur la partie sémantique. La story 3.3 s'occupera de la fusion propre avec la recherche textuelle (SQL LIKE).
|
|
- **Performance :** Le calcul de similarité pour 1000 notes prend environ 1ms en JS.
|
|
|
|
## Dev Agent Record
|
|
|
|
### Agent Model Used
|
|
|
|
### Debug Log References
|
|
|
|
### Completion Notes List
|
|
|
|
### File List
|